Home
Class 12
MATHS
If ((1+i)/(1-i))^(m/2)=((1+i)/(-1+i))^(n...

If `((1+i)/(1-i))^(m/2)=((1+i)/(-1+i))^(n/3)=1`. Find the G.C.D. of m,n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations involving complex numbers and their powers. Given: \[ \left(\frac{1+i}{1-i}\right)^{\frac{m}{2}} = \left(\frac{1+i}{-1+i}\right)^{\frac{n}{3}} = 1 \] ### Step 1: Simplify \(\frac{1+i}{1-i}\) First, we simplify \(\frac{1+i}{1-i}\): \[ \frac{1+i}{1-i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{1 + 2i - 1}{1 + 1} = \frac{2i}{2} = i \] ### Step 2: Find the argument of \(i\) The argument of \(i\) is: \[ \arg(i) = \frac{\pi}{2} \] ### Step 3: Set the equation for \(m\) Now, substituting back into the equation: \[ \left(i\right)^{\frac{m}{2}} = 1 \] This implies: \[ e^{i \frac{\pi}{2} \cdot \frac{m}{2}} = 1 \] The exponential equals 1 when: \[ \frac{\pi}{2} \cdot \frac{m}{2} = 2k\pi \quad (k \in \mathbb{Z}) \] Solving for \(m\): \[ \frac{m}{4} = 2k \implies m = 8k \] Thus, \(m\) must be a multiple of 8. ### Step 4: Simplify \(\frac{1+i}{-1+i}\) Next, we simplify \(\frac{1+i}{-1+i}\): \[ \frac{1+i}{-1+i} = \frac{(1+i)(-1-i)}{(-1+i)(-1-i)} = \frac{-1 - i + i + 1}{1 + 1} = \frac{0}{2} = 0 \] This is incorrect. Let's recalculate: \[ \frac{1+i}{-1+i} = \frac{(1+i)(-1-i)}{(-1+i)(-1-i)} = \frac{-1 - i + i + 1}{1 + 1} = \frac{0}{2} = 0 \] This is incorrect. Let's recalculate: \[ \frac{1+i}{-1+i} = \frac{(1+i)(-1-i)}{(-1+i)(-1-i)} = \frac{-1 - i + i + 1}{1 + 1} = \frac{0}{2} = 0 \] ### Step 5: Find the argument of \(-1+i\) The argument of \(-1+i\) is: \[ \arg(-1+i) = \frac{3\pi}{4} \] ### Step 6: Set the equation for \(n\) Now substituting back into the equation: \[ \left(\frac{1+i}{-1+i}\right)^{\frac{n}{3}} = 1 \] This implies: \[ e^{i \left(\frac{\pi}{4} - \frac{3\pi}{4}\right) \cdot \frac{n}{3}} = 1 \] This simplifies to: \[ e^{-i \frac{\pi}{2} \cdot \frac{n}{3}} = 1 \] The exponential equals 1 when: \[ -\frac{\pi}{2} \cdot \frac{n}{3} = 2k\pi \quad (k \in \mathbb{Z}) \] Solving for \(n\): \[ -\frac{n}{6} = 2k \implies n = -12k \] Thus, \(n\) must be a multiple of 12. ### Step 7: Find the G.C.D. of \(m\) and \(n\) From the above, we have: - \(m = 8k\) - \(n = -12k\) The G.C.D. of \(m\) and \(n\) can be found using the coefficients: \[ \text{G.C.D.}(8, 12) = 4 \] ### Final Answer: \[ \text{G.C.D.}(m, n) = 4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^((m)/(2))=((1+i)/(1-i))^((n)/(3))=1, (m, ninN) then the greatest common divisor of the least values of m and n is .............

If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in N , then the minimum value of n+m is equal to

If I(m,n)=int_(0)^(1)t^(m)(1+t)^(n).dt, then the expression for I(m,n) in terms of I(m+1,n-1) is:

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

The value of (1+i)(1+i^(2))(1+i^(3))(1+i^(4)) is a.2 b.0 c.1 d.i

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)