Home
Class 12
MATHS
If lim(x rarr 0)(|1-x+|x||)/(|lambda-x+[...

If `lim_(x rarr 0)(|1-x+|x||)/(|lambda-x+[x]|)=L` find L, where `lambda in R-{0,1}` and [.] denotes G.I.F.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ L = \lim_{x \to 0} \frac{|1 - x + |x||}{|\lambda - x + [x]|} \] where \(\lambda \in \mathbb{R} \setminus \{0, 1\}\) and \([x]\) denotes the greatest integer function (G.I.F.), we will analyze the limit from both the left-hand side (LHL) and the right-hand side (RHL) as \(x\) approaches 0. ### Step 1: Analyze the left-hand limit (LHL) When \(x\) approaches 0 from the left (\(x \to 0^{-}\)), we can substitute \(x = -h\) where \(h \to 0^{+}\). Thus, we have: \[ LHL = \lim_{h \to 0^{+}} \frac{|1 - (-h) + |-h||}{|\lambda - (-h) + [-h]|} \] Calculating the components: - \(|-h| = h\), so the numerator becomes: \[ |1 + h + h| = |1 + 2h| = 1 + 2h \quad \text{(as } h \to 0^{+}\text{)} \] - For the denominator, \([-h] = -1\) (since \([-h]\) is the greatest integer less than or equal to \(-h\)), thus: \[ |\lambda + h + (-1)| = |\lambda + h - 1| = |\lambda - 1 + h| \] Putting it together, we have: \[ LHL = \lim_{h \to 0^{+}} \frac{1 + 2h}{|\lambda - 1 + h|} \] As \(h \to 0^{+}\), this simplifies to: \[ LHL = \frac{1}{|\lambda - 1|} \] ### Step 2: Analyze the right-hand limit (RHL) Now, consider \(x\) approaching 0 from the right (\(x \to 0^{+}\)). We substitute \(x = h\) where \(h \to 0^{+}\): \[ RHL = \lim_{h \to 0^{+}} \frac{|1 - h + |h||}{|\lambda - h + [h]|} \] Calculating the components: - \(|h| = h\), so the numerator becomes: \[ |1 - h + h| = |1| = 1 \] - For the denominator, \([h] = 0\) (since \(h\) is positive and less than 1), thus: \[ |\lambda - h + 0| = |\lambda - h| \] Putting it together, we have: \[ RHL = \lim_{h \to 0^{+}} \frac{1}{|\lambda - h|} \] As \(h \to 0^{+}\), this simplifies to: \[ RHL = \frac{1}{|\lambda|} \] ### Step 3: Set LHL equal to RHL For the limit \(L\) to exist, we must have: \[ \frac{1}{|\lambda - 1|} = \frac{1}{|\lambda|} \] Cross-multiplying gives: \[ |\lambda| = |\lambda - 1| \] ### Step 4: Solve the equation This absolute value equation can be split into two cases: 1. \(\lambda = \lambda - 1\) which simplifies to \(1 = 0\) (not possible). 2. \(\lambda = -(\lambda - 1)\) which simplifies to \(2\lambda = 1\) or \(\lambda = \frac{1}{2}\). However, since \(\lambda\) must not be \(0\) or \(1\), we check if \(\lambda = \frac{1}{2}\) is valid. It is valid since it is not in the excluded set. ### Conclusion Thus, the limit \(L\) is given by: \[ L = \frac{1}{|\lambda - 1|} = \frac{1}{|\frac{1}{2} - 1|} = \frac{1}{\frac{1}{2}} = 2 \] So, the final answer is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x rarr0)(2x-1)

Evaluate "lim_(x rarr0)x tan(1/x)

Evaluate : lim_(x rarr 0)(tanx/x)^(1/x)

Evaluate: lim_(x rarr0)(1+x)^(osec x)

lim_(x rarr0)(sin[cos x])/(1+cos[cos x]) is,where [.] is GIF

lim_(x rarr0)(x[x])/(sin|x|) , where [.] denote greater integer function

The value of L=lim_(x rarr0)((1)/(x))^(sin x)

lim_(x rarr0)f(x)and(lim)_(x rarr1)f(x), where f(x)=[2x+3,x 0

Evaluate : lim_(x rarr0)(a^(2x)-1)/(x)