Home
Class 12
MATHS
(5)int(-2 pi)^(5 pi)cot^(-1)(t tan x)dx...

(5)int_(-2 pi)^(5 pi)cot^(-1)(t tan x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx is equal to (7 pi)/(2)(b)(7 pi^(2))/(2)(c)(3 pi)/(2) (d) None of these

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

int_(-pi)^(5pi)cot^(-1)(cotx)dx equals

If I=int_(-2pi)^(5pi) cot^-1(tanx)dx . Then, 2I/pi^2 is ….

int_(0)^(10 pi)cot^(-1)(cos t)dx

int_(0)^((pi)/(2))(1)/(cot x+tan x)dx