Home
Class 12
MATHS
int(0)^(1)(tan^(-1)x)/(x)dx" equals "...

int_(0)^(1)(tan^(-1)x)/(x)dx" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

int_(0)^(1)x(tan^(-1)x)^(2)dx

2 int_(0)^(1) (tan^(-1)x)/(x) dx=

int_(0)^(1)x cos(tan^(-1)x)dx

int_(0)^(1)tan(sin^(-1)x)dx equals

int_(0)^(1)tan(sin^(-1)x)dx equals

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int _(0)^(1) (tan ^(-1))/(x ) dx =

int_(0)^(1)tan(sin^(-1)x)dx is equals