Home
Class 12
MATHS
" If "y=Ae^(mx)+Be^(-mx)" ,then prove th...

" If "y=Ae^(mx)+Be^(-mx)" ,then prove that "

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the second order derivative of the following functions If y = ae^(mx) + be^(-mx) , prove that (d^2y)/(dx^2) - m^2y = 0

if y=Ae^(mx)+Be^(nx) then prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx) , prove that (d^(2)y)/(dx^(2)) -(m+n) (dy)/(dx) + mny=0 .

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

If y=Ae^(mx)+Be^(nx) then show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=ae^(mx)+bcosmx then prove that (d^2y)/(dx^2)+m^2y=2am^2e^(mx)

If y= Ae^(mx)+Be^(nx) prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+ (mn)y=0

If y=ae^(mx)+be^(-mx) , then y_(2) is :

If y= Ae^(mx) +Be^(nx) , show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0 .