Home
Class 12
MATHS
Let alpha, beta and gamma be the roots o...

Let `alpha, beta` and `gamma` be the roots of the cubic equation `a_0x^3+3a_1x^2+3a_2x+a_3=0(a_0!=0)`. Then teh values of `(alpha-beta)^2+(beta-gamma)^2+(gamma-alpha)^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta and gamma be the roots of the cubic equation a_(0)x^(3)+3a_(1)x^(2)+3a_(2)x+a_(3)=0(a_(0)!=0) Then teh values of (alpha-beta)^(2)+(beta-gamma)^(2)+(gamma-alpha)^(2)=

If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(2) + x + 3)=0 , then the value of alpha^(3) + beta^(3) + gamma^(3) is:

If alpha, beta, gamma are the roots of the cubic equation x^(3)+qx+r=0 then the find equation whose roots are (alpha-beta)^(2),(beta-gamma)^(2),(gamma-alpha)^(2) .

If alpha, beta, gamma are the roots of the cubic equation x^(3)+qx+r=0 then the find equation whose roots are (alpha-beta)^(2),(beta-gamma)^(2),(gamma-alpha)^(2) .

If alpha, beta, gamma are the roots of the cubic equation x^(3)+qx+r=0 then the find equation whose roots are (alpha-beta)^(2),(beta-gamma)^(2),(gamma-alpha)^(2) .

If alpha, beta and gamma are the roots of the cubic equation x^3 + 2x^2 + 3x + 4 = 0, for a cubic equation roots are 2 alpha, 2 beta, 2 gamma

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then find he value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta))