Home
Class 11
MATHS
(lim)(x->0)(sin2x)/x is equal to a. 1 b ...

`(lim)_(x->0)(sin2x)/x` is equal to a. 1 b . 1/2 c. 2 d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x->0)(sqrt(1+x)-1)/x is equal to a. 1 b . 0 c. 2 d. 1/2

(lim_(x rarr0)(sin2x)/(x) is equal to a.1b*1/2c.2d.0

lim x→0 ( sin x ) / x is equal to a. 1 b . π c. x d. π/180

(lim)_(x->0)(|sin x|)/x is a. 1 b . -1 c. 0 d. none of these

(lim)_(x->0)(1-cos2x)/x is a. 1 b . 2 c. 4 d. 0

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

(lim)_(x->oo)(sqrt(x^2-1))/(2x+1) is equal to a. 0 b . -1 c. 1//2 d. 1

(lim_(x rarr0)(sqrt(1+x)-1)/(x) is equal to a.1b.0 c.2d.(1)/(2)

lim_(x rarr0)(ln(sin2x))/(ln(sin x)) is equals to a.0 b.1 c.2 d.non x rarr0ln(sin x) existent

(lim_(x rarr0)(sin x^(0))/(x) is equal to a.1b*pi c.xdpi/180