Home
Class 12
MATHS
The value of lim(x rarr pi/4) sqrt(1 - s...

The value of `lim_(x rarr pi/4) sqrt(1 - sqrt(sin 2x))/(pi - 4x) is`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr(pi)/(4))(sqrt(1-sqrt(sin2x)))/(pi-4x)is

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

lim_(x rarr pi/4)(sqrt(cos x)-sqrt(sin x))/(x-(pi)/(4))

lim_(x rarr pi)(sqrt(1-cos x)-sqrt(2))/(sin^(2)x)

The value of lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(sin^(-1)2x)=

lim_(x rarr(pi)/(2))(sqrt(2)-sqrt(1+sin x))/(cos^(2)x)