Home
Class 12
MATHS
If x^(16)y^9=(x^2+y)^(17) , prove that x...

If `x^(16)y^9=(x^2+y)^(17)` , prove that `x(dy)/(dx)=2y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^16 . y^9 = (x^2 + y)^(17) , prove that (dy)/(dx) = (2y)/x .

If x^(16)y^(9)=(x^(2)+y)^(17) , prove that dy/dx=(2y)/x .

If x^16 y^9 = (x^2 + y)^17, Prove (dy)/(dx) = (2y)/(x)

If (x-y)x^((x)/(x-y))=a, prove that y(dy)/(dx)+x=2y

If y=x+(1)/(x+(1)/(x+(1)/(x+))), prove that (dy)/(dx)=(y)/(2y-x)

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

If (x-y)e^((x)/(x-y))=a, prove that (dy)/(dx)+x=2y

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If (x-y)e^((x)/(x-y))=a, Prove that y(dy)/(dx)+x=2y