Home
Class 12
MATHS
if f(x)=|[2cosx,1,0],[x-pi/2,2cosx,1],[0...

if `f(x)=|[2cosx,1,0],[x-pi/2,2cosx,1],[0,1,2cosx]|` then `(df)/(dx)` at `x=pi/2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2cosx)| then

if f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2cosx]| then int_0^(pi/2) f(x)dx is equal to (A) 1/4 (B) -1/3 (C) 1/2 (D) 1

if f(x)=[[cosx,1,0],[1,2cosx,1],[0,1,2cosx]], then int_0^(pi/2) f(x)dx = (i)-1/3 (ii)1/4 (iii)1/2 (iv)none of these

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Select and write the correct answer from the given alternatives in each of the following:If f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2cosx)| ,then f(pi/3) =

If f(x)=|{:(cosx,1,0),(1,2cosx,1),(0,1,2cosx):}|" then "int_(0)^(pi//2)f(x)dx=

f(x)=|(2 cosx, 1, 0),(x-(pi)/2, 2 cos x, 1),(0, 1, 2cosx)|impliesf'(pi)=