Home
Class 10
MATHS
Prove that (tanA-tanB)^2 + (1 + tanAtanB...

Prove that `(tanA-tanB)^2 + (1 + tanAtanB)^2 = sec^2A sec^2 B`

Promotional Banner

Similar Questions

Explore conceptually related problems

(tanA-tanB)^2+(1+tanAtanB)^2=sec^2Asec^2B .

Prove that (tan A-tan B)^(2)+(1+tan A tan B)^(2)=sec^(2)A sec^(2)B

Prove the following: (1+tanAtanB)^2+(tanA-tanB)^2=sec^2Asec^2B

Prove the identity: (1+tanAtanB)^2+(tan"A"-tan"B")^2=sec^2Asec^2B

(6) 1+tanA tan2A = sec2A

Prove that, (1+tanA)^2 + (1-tanA)^2 = 2sec^2A

Prove that: (tanA + tanB)/(cotA+cotB)=tanAtanB

Prove that: (tanA+tanB)/(tanA-tanB)=sin(A+B)/(sin(A-B)

Prove that (1+tanA)^(2)+(1-tanA)^(2)=2sec^(2)A .

Prove that: tanA(1+sec2A)=tan2A