Home
Class 12
MATHS
If int0^(1/2)(x^2)/(1-x^2)^(3/2)dx=k/6, ...

If `int_0^(1/2)(x^2)/(1-x^2)^(3/2)dx=k/6`, then `k=`

A

`3sqrt(2)+pi`

B

`2sqrt(3)-pi`

C

`2sqrt(3)+pi`

D

`3sqrt(2)-pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{1/2} \frac{x^2}{(1-x^2)^{3/2}} \, dx \) and find \( k \) such that \( \int_0^{1/2} \frac{x^2}{(1-x^2)^{3/2}} \, dx = \frac{k}{6} \), we can follow these steps: ### Step 1: Substitution Let \( x = \sin \theta \). Then, \( dx = \cos \theta \, d\theta \). ### Step 2: Change the limits of integration When \( x = 0 \), \( \theta = 0 \). When \( x = \frac{1}{2} \), \( \theta = \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \). ### Step 3: Rewrite the integral The integral becomes: \[ \int_0^{\frac{\pi}{6}} \frac{\sin^2 \theta}{(1 - \sin^2 \theta)^{3/2}} \cos \theta \, d\theta \] Since \( 1 - \sin^2 \theta = \cos^2 \theta \), we can rewrite the integral as: \[ \int_0^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos^3 \theta} \cos \theta \, d\theta = \int_0^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos^2 \theta} \, d\theta \] This simplifies to: \[ \int_0^{\frac{\pi}{6}} \tan^2 \theta \, d\theta \] ### Step 4: Use the identity for \( \tan^2 \theta \) Recall that \( \tan^2 \theta = \sec^2 \theta - 1 \). Thus, we can rewrite the integral: \[ \int_0^{\frac{\pi}{6}} \tan^2 \theta \, d\theta = \int_0^{\frac{\pi}{6}} (\sec^2 \theta - 1) \, d\theta \] ### Step 5: Evaluate the integral Now, we can split the integral: \[ \int_0^{\frac{\pi}{6}} \sec^2 \theta \, d\theta - \int_0^{\frac{\pi}{6}} 1 \, d\theta \] The integral of \( \sec^2 \theta \) is \( \tan \theta \), so we have: \[ \left[ \tan \theta \right]_0^{\frac{\pi}{6}} - \left[ \theta \right]_0^{\frac{\pi}{6}} = \tan\left(\frac{\pi}{6}\right) - 0 - \left(\frac{\pi}{6} - 0\right) \] Calculating \( \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \): \[ \frac{1}{\sqrt{3}} - \frac{\pi}{6} \] ### Step 6: Final result Thus, we have: \[ \int_0^{1/2} \frac{x^2}{(1-x^2)^{3/2}} \, dx = \frac{1}{\sqrt{3}} - \frac{\pi}{6} \] Setting this equal to \( \frac{k}{6} \): \[ \frac{1}{\sqrt{3}} - \frac{\pi}{6} = \frac{k}{6} \] Multiplying through by 6 gives: \[ 6\left(\frac{1}{\sqrt{3}} - \frac{\pi}{6}\right) = k \] This simplifies to: \[ k = 6 \cdot \frac{1}{\sqrt{3}} - \pi = \frac{6}{\sqrt{3}} - \pi = 2\sqrt{3} - \pi \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{2\sqrt{3} - \pi} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of the integral int_(0)^(1//2) (x^(2))/((1-x^(2))^(3//2)) dx is (k)/(6) then k is equal to :

int_0^1 x^2(1-x)^(3/2) dx=

int_0^1(x^2-2)/(x^2+1)dx=?

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

If int_(0)^(a)sqrt((a-x)/(x))dx=(K)/(2), then K=. . .

If int_(0)^(a) sqrt((a-x)/(x)) dx = (k)/(2) ,then k = …..

If int_(0)^(k)(1)/(2+8x^(2))dx=(pi)/(16), find the value of k

If int_(0)^(1)(3x^(2)+2x+k)dx=0, find the value of k.