Home
Class 12
MATHS
If intsin^(-1)(sqrt(x)/sqrt(x+1))dx=A(x)...

If `intsin^(-1)(sqrt(x)/sqrt(x+1))dx=A(x)tan^(-1)sqrt(x)+B(x)+C` then A(x) and B(x) will be

A

`1+x,sqrt(x)`

B

`1-x,-sqrt(x)`

C

`1+x,-sqrt(x)`

D

`1-x,sqrt(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the functions \( A(x) \) and \( B(x) \) in the equation: \[ \int \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x+1}}\right) dx = A(x) \tan^{-1}(\sqrt{x}) + B(x) + C \] ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x+1}}\right) dx \] To simplify this, we can use the identity that relates \( \sin^{-1} \) and \( \tan^{-1} \). We can express \( \sin^{-1}(y) \) in terms of \( \tan^{-1} \) using a right triangle. ### Step 2: Construct a Right Triangle Let \( y = \frac{\sqrt{x}}{\sqrt{x+1}} \). We can construct a right triangle where: - The opposite side is \( \sqrt{x} \) - The hypotenuse is \( \sqrt{x+1} \) Using the Pythagorean theorem, the adjacent side will be: \[ \sqrt{(\sqrt{x+1})^2 - (\sqrt{x})^2} = \sqrt{(x+1) - x} = \sqrt{1} = 1 \] Thus, we can write: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{x}}{1} = \sqrt{x} \] This implies: \[ \sin^{-1}\left(\frac{\sqrt{x}}{\sqrt{x+1}}\right) = \tan^{-1}(\sqrt{x}) \] ### Step 3: Substitute into the Integral Now, we can rewrite the integral: \[ I = \int \tan^{-1}(\sqrt{x}) dx \] ### Step 4: Integration by Parts We will use integration by parts, where we let: - \( u = \tan^{-1}(\sqrt{x}) \) - \( dv = dx \) Then, we differentiate \( u \) and integrate \( dv \): \[ du = \frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}} dx = \frac{1}{2\sqrt{x}(1+x)} dx \] \[ v = x \] Using integration by parts: \[ I = uv - \int v \, du \] \[ = x \tan^{-1}(\sqrt{x}) - \int x \cdot \frac{1}{2\sqrt{x}(1+x)} dx \] ### Step 5: Simplify the Remaining Integral Now we simplify the remaining integral: \[ \int \frac{x}{2\sqrt{x}(1+x)} dx = \frac{1}{2} \int \frac{\sqrt{x}}{1+x} dx \] Let \( t = \sqrt{x} \), then \( x = t^2 \) and \( dx = 2t \, dt \): \[ = \frac{1}{2} \int \frac{t^2}{1+t^2} \cdot 2t \, dt = \int \frac{t^3}{1+t^2} dt \] ### Step 6: Final Integration Now we can split the integral: \[ \int \frac{t^3}{1+t^2} dt = \int t dt - \int \frac{t}{1+t^2} dt \] The first integral is straightforward: \[ \int t \, dt = \frac{t^2}{2} = \frac{x}{2} \] The second integral can be solved using substitution: \[ \int \frac{t}{1+t^2} dt = \frac{1}{2} \ln(1+t^2) \] ### Step 7: Combine Results Putting everything together, we have: \[ I = x \tan^{-1}(\sqrt{x}) - \left( \frac{x}{2} - \frac{1}{2} \ln(1+x) \right) + C \] ### Step 8: Identify \( A(x) \) and \( B(x) \) Now we can express \( I \) in the form: \[ I = A(x) \tan^{-1}(\sqrt{x}) + B(x) + C \] Comparing terms, we find: \[ A(x) = x \] \[ B(x) = -\frac{x}{2} + \frac{1}{2} \ln(1+x) \] ### Final Answer Thus, we conclude: \[ A(x) = x, \quad B(x) = -\frac{x}{2} + \frac{1}{2} \ln(1+x) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(x+a)-sqrt(x+b))dx=

int(1)/(sqrt(x+a)+sqrt(x+b))dx

int(1)/(sqrt(x+a)+sqrt(x+b))dx

"int(1)/(sqrt(x+a)+sqrt(x+b))dx

If int sin^(-1) ( sqrt( (x)/(1 + x) ) )dx = A(x) tan^(-1) (sqrtx) + B(x) + C , where C is a constant of integration then the ordered pair (A(x) , B(x) ) can be :

intsin^-1sqrt(x/(a+x))dx

int(1)/(sqrt((x-a)(x-b)))dx

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

if int tan^(-1)sqrt(x)dx=u tan^(-1)sqrt(x)-sqrt(x)+c then u=