Home
Class 12
MATHS
which of the following point lies on pla...

which of the following point lies on plane contaning lines `vecr=hati+lambda(hati+hatj+hatk)` and `vecr = -hatj+mu(-hati-2hatj+hatk)`

A

`(1,3,6)`

B

`(1,-3,6)`

C

`(-2,1,2)`

D

`(1,3,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which point lies on the plane containing the given lines, we will follow these steps: ### Step 1: Identify the Direction Vectors of the Lines The lines are given in vector form: 1. \( \vec{r} = \hat{i} + \lambda(\hat{i} + \hat{j} + \hat{k}) \) 2. \( \vec{r} = -\hat{j} + \mu(-\hat{i} - 2\hat{j} + \hat{k}) \) From the first line, we can extract the direction vector: - For Line 1, the direction vector \( \vec{b_1} = \hat{i} + \hat{j} + \hat{k} \). From the second line, we can extract the direction vector: - For Line 2, the direction vector \( \vec{b_2} = -\hat{i} - 2\hat{j} + \hat{k} \). ### Step 2: Calculate the Normal Vector of the Plane The normal vector \( \vec{n} \) of the plane can be found using the cross product of the two direction vectors: \[ \vec{n} = \vec{b_1} \times \vec{b_2} \] Calculating the cross product: \[ \vec{b_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{b_2} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \] \[ \vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -1 & -2 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{n} = \hat{i} \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ -1 & -2 \end{vmatrix} \] \[ = \hat{i}(1 \cdot 1 - 1 \cdot (-2)) - \hat{j}(1 \cdot 1 - 1 \cdot (-1)) + \hat{k}(1 \cdot (-2) - 1 \cdot (-1)) \] \[ = \hat{i}(1 + 2) - \hat{j}(1 + 1) + \hat{k}(-2 + 1) \] \[ = 3\hat{i} - 2\hat{j} - \hat{k} \] ### Step 3: Write the Equation of the Plane Using the point-normal form of the plane equation: \[ \vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n} \] where \( \vec{a} \) is a point on the plane. We can take \( \vec{a} = \hat{i} \) (from Line 1 when \( \lambda = 0 \)). The equation becomes: \[ \vec{r} \cdot (3\hat{i} - 2\hat{j} - \hat{k}) = \hat{i} \cdot (3\hat{i} - 2\hat{j} - \hat{k}) \] Calculating the right-hand side: \[ \hat{i} \cdot (3\hat{i} - 2\hat{j} - \hat{k}) = 3 \] Thus, the equation of the plane is: \[ 3x - 2y - z = 3 \] ### Step 4: Check Which Points Lie on the Plane Now we will check each given point to see if it satisfies the plane equation \( 3x - 2y - z - 3 = 0 \). 1. **Point (1, 3, 6)**: \[ 3(1) - 2(3) - 6 - 3 = 3 - 6 - 6 - 3 = -12 \quad (\text{not on the plane}) \] 2. **Point (1, -3, 6)**: \[ 3(1) - 2(-3) - 6 - 3 = 3 + 6 - 6 - 3 = 0 \quad (\text{on the plane}) \] 3. **Point (-2, 1, 2)**: \[ 3(-2) - 2(1) - 2 - 3 = -6 - 2 - 2 - 3 = -13 \quad (\text{not on the plane}) \] 4. **Point (1, 3, 1)**: \[ 3(1) - 2(3) - 1 - 3 = 3 - 6 - 1 - 3 = -7 \quad (\text{not on the plane}) \] ### Conclusion The point that lies on the plane is **(1, -3, 6)**.
Promotional Banner

Similar Questions

Explore conceptually related problems

The lines vecr=(hati+hatj)+lamda(hati+hatk)andvecr=(hati+hatj)+mu(-hati+hatj-hatk) are

Find the vector and the Cartesian form of the equation of the plane containing two lines: vecr=hati+2hatj-hatk+lamda(2hati+3hatj+6hatk) and vecr= 3hati+3hatj-5hatk+mu(-2hati+3hatj+8hatk)

Find the angle between the lines vecr = (hati+hatj)+lambda (hati+hatj+hatk)and vecr=(2hati-hatj)+t(2hati+3hatj+hatk)

Determine whether the following pair of lines intersect or not. i. vecr=hati-hatj+lamda(2hati+hatk), vecr=2hati-hatj+mu(hati+hatj-hatk)

Find the vector equation of the plane in which the lines vecr=hati+hatj+lambda(hati+2hatj-hatk) and vecr=(hati+hatj)+mu(-hati+hatj-2hatk) lie.

Find the shortest distance between the following pair of line: vecr=hati+2hatj+hatk+lamda(hati-hatj+hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk)