Home
Class 12
MATHS
If x^3dy+ xydx= 2ydx +x^2dy and y(2) =e ...

If `x^3dy+ xydx= 2ydx +x^2dy` and `y(2) =e` then `y(4)`= ?

A

`((1/2) +sqrte)`

B

`(1/2sqrte)`

C

`sqrte`

D

`3/2sqrte`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \( x^3 dy + xy dx = 2y dx + x^2 dy \) with the initial condition \( y(2) = e \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ x^3 dy + xy dx = 2y dx + x^2 dy \] Rearranging gives us: \[ x^3 dy - x^2 dy = 2y dx - xy dx \] This simplifies to: \[ (x^3 - x^2) dy = (2y - xy) dx \] Factoring out common terms: \[ (x^2(x - 1)) dy = y(2 - x) dx \] ### Step 2: Separating Variables Now, we can separate the variables: \[ \frac{dy}{y} = \frac{(2 - x)}{x^2(x - 1)} dx \] ### Step 3: Integrating Both Sides Next, we integrate both sides: \[ \int \frac{dy}{y} = \int \frac{(2 - x)}{x^2(x - 1)} dx \] The left side integrates to: \[ \ln |y| + C_1 \] For the right side, we will use partial fraction decomposition: \[ \frac{(2 - x)}{x^2(x - 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} \] Multiplying through by the denominator \( x^2(x - 1) \) and solving for \( A \), \( B \), and \( C \) will yield the coefficients. ### Step 4: Finding Coefficients Setting up the equation: \[ 2 - x = A x(x - 1) + B(x - 1) + C x^2 \] We will find \( A \), \( B \), and \( C \) by substituting suitable values for \( x \) or by equating coefficients. 1. Set \( x = 0 \): \[ 2 = B(-1) \implies B = -2 \] 2. Set \( x = 1 \): \[ 1 = C(1) \implies C = 1 \] 3. Set \( x = 2 \) to find \( A \): \[ 0 = A(2)(1) - 2(1) + 2 \implies 0 = 2A - 2 \implies A = 1 \] Thus, we have \( A = 1 \), \( B = -2 \), \( C = 1 \). ### Step 5: Integrating the Right Side Now substituting back: \[ \int \left( \frac{1}{x} - \frac{2}{x^2} + \frac{1}{x - 1} \right) dx \] This integrates to: \[ \ln |x| + \frac{2}{x} + \ln |x - 1| + C_2 \] ### Step 6: Combining Results Combining both integrals, we have: \[ \ln |y| = \ln |x| + \frac{2}{x} + \ln |x - 1| + C \] Exponentiating both sides gives: \[ y = K \cdot x \cdot (x - 1) e^{\frac{2}{x}} \] where \( K = e^C \). ### Step 7: Using Initial Condition Using the initial condition \( y(2) = e \): \[ e = K \cdot 2 \cdot (2 - 1) e^{\frac{2}{2}} \implies e = K \cdot 2 \cdot 1 \cdot e \implies K = \frac{1}{2} \] Thus, the equation for \( y \) becomes: \[ y = \frac{1}{2} x (x - 1) e^{\frac{2}{x}} \] ### Step 8: Finding \( y(4) \) Now we find \( y(4) \): \[ y(4) = \frac{1}{2} \cdot 4 \cdot (4 - 1) e^{\frac{2}{4}} = \frac{1}{2} \cdot 4 \cdot 3 \cdot e^{\frac{1}{2}} = 6 e^{\frac{1}{2}} = 6 \sqrt{e} \] Thus, the final answer is: \[ \boxed{6 \sqrt{e}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(3)dy+xydx=x^(2)dy+2ydx,y(2)=e then y(-1)=

If x^(3)dy+xydx=x^(2)dy+2ydx,y(2)=e then y(-1)=

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

If (x^(2)+y^(2))dy=xydx and y(1)=1 and y(x_(o))=e, then x_(o)=

The solution of the primitive integral equation (x^(2)+y^(2))dy=xydx is y=y(x)* If y(1)=1 and y(x_(0))=e, then x_(0) is

If (x^2+y^2)dy=xydx and y(1)=1 . If y(x_0)=e then x_0 is equal to (A) sqrt(2)e (B) sqrt(3)e (C) 2e (D) e

x ^ (2) ydx = (x ^ (3) + y ^ (3)) dy

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If y=e^(3x+2) ,then (dy)/(dx) is

If y=e^(x)x^(2) then (dy)/(dx)=