Home
Class 12
MATHS
If (a/costheta)=(b/(cos(theta+(2pi/3)))=...

If `(a/costheta)=(b/(cos(theta+(2pi/3)))=(c/cos(theta+(4pi/3)))` then find angle between vectors `ahati+bhatj+chatk` and `bhati+chatj+ahatk` if `(theta= (2pi/9))` and `a^2+b^2+c^2=1`, is

A

`(pi/3)`

B

`(pi/6)`

C

`(2pi/3)`

D

`(5pi/6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the vectors \( \mathbf{A} = a \hat{i} + b \hat{j} + c \hat{k} \) and \( \mathbf{B} = b \hat{i} + c \hat{j} + a \hat{k} \) given the conditions provided. ### Step 1: Set up the equations Given: \[ \frac{a}{\cos \theta} = \frac{b}{\cos(\theta + \frac{2\pi}{3})} = \frac{c}{\cos(\theta + \frac{4\pi}{3})} = k \] From this, we can express \( a, b, c \) in terms of \( k \): \[ a = k \cos \theta \] \[ b = k \cos\left(\theta + \frac{2\pi}{3}\right) \] \[ c = k \cos\left(\theta + \frac{4\pi}{3}\right) \] ### Step 2: Substitute \( \theta \) Given \( \theta = \frac{2\pi}{9} \), we substitute this into the equations for \( a, b, c \): \[ a = k \cos\left(\frac{2\pi}{9}\right) \] \[ b = k \cos\left(\frac{2\pi}{9} + \frac{2\pi}{3}\right) = k \cos\left(\frac{2\pi}{9} + \frac{6\pi}{9}\right) = k \cos\left(\frac{8\pi}{9}\right) \] \[ c = k \cos\left(\frac{2\pi}{9} + \frac{4\pi}{3}\right) = k \cos\left(\frac{2\pi}{9} + \frac{12\pi}{9}\right) = k \cos\left(\frac{14\pi}{9}\right) \] ### Step 3: Use the identity for cosine Using the identity \( \cos(x + y) = \cos x \cos y - \sin x \sin y \), we can find \( b \) and \( c \): - \( \cos\left(\frac{8\pi}{9}\right) = -\cos\left(\frac{\pi}{9}\right) \) - \( \cos\left(\frac{14\pi}{9}\right) = -\cos\left(\frac{4\pi}{9}\right) \) Thus, we have: \[ b = -k \cos\left(\frac{\pi}{9}\right) \] \[ c = -k \cos\left(\frac{4\pi}{9}\right) \] ### Step 4: Use the condition \( a^2 + b^2 + c^2 = 1 \) Now we substitute \( a, b, c \) into the equation: \[ (k \cos\left(\frac{2\pi}{9}\right))^2 + (-k \cos\left(\frac{\pi}{9}\right))^2 + (-k \cos\left(\frac{4\pi}{9}\right))^2 = 1 \] \[ k^2 \left( \cos^2\left(\frac{2\pi}{9}\right) + \cos^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{4\pi}{9}\right) \right) = 1 \] Let \( S = \cos^2\left(\frac{2\pi}{9}\right) + \cos^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{4\pi}{9}\right) \). Then: \[ k^2 S = 1 \implies k = \frac{1}{\sqrt{S}} \] ### Step 5: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) Now we can find the dot product: \[ \mathbf{A} \cdot \mathbf{B} = a b + b c + c a \] Substituting the values: \[ = k^2 \left( \cos\left(\frac{2\pi}{9}\right)(-\cos\left(\frac{\pi}{9}\right)) + (-k \cos\left(\frac{\pi}{9}\right))(-k \cos\left(\frac{4\pi}{9}\right)) + (-k \cos\left(\frac{4\pi}{9}\right))(k \cos\left(\frac{2\pi}{9}\right)) \right) \] ### Step 6: Find the angle between the vectors Using the formula for the angle between two vectors: \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} \] Since \( |\mathbf{A}| = |\mathbf{B}| = 1 \) (from the condition \( a^2 + b^2 + c^2 = 1 \)), we can find the angle \( \theta \). ### Final Step: Conclusion After calculating the dot product and substituting back into the cosine formula, we find: \[ \cos \theta = -\frac{1}{2} \implies \theta = \frac{2\pi}{3} \] Thus, the angle between the vectors \( \mathbf{A} \) and \( \mathbf{B} \) is \( \frac{2\pi}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x*cos theta=y*cos(theta+(2 pi)/(3))=2*cos(theta+(4 pi)/(3)) then evaluate xy+yz+zx

Let a,b, c in R be such that a^(2) + b^(2) + c^(2) = 1 . If a cos theta = b cos (theta + (2pi)/(3)) = c cos ( theta + (4pi)/(3)) , where theta = (pi)/(9) , then the angle between the vectors a hat(i) + b hat(j) + c hat(k) and bhat(i) + chat(j) + ahat(k) is

If (x)/(cos theta)=(y)/(cos(theta-(2 pi)/(3)))=(z)/(cos(theta+(2 pi)/(3))) then x+y+z is (a)1(b)0(c)-1(d) none of these

If 5costheta+3cos(theta+(pi)/(3))+"sin"^(2)(pi)/(3)-2=A then value of A will be between ?

Prove that: cos^3theta+cos^3 (theta- (2pi)/n)+cos^3 (theta- (4pi)/n)+… to n terms =0

If 2cos(theta)+sin(theta)=1 and (3 pi)/(2)

int_(pi//4)^(pi//2)(costheta)/((cos\ (theta)/(2)+sin\ (theta)/(2)))\ d theta

If 5cos2 theta+2cos^(2)((theta)/(2))+1=0-pi

cos((3 pi)/(2)+theta)*cos(2 pi+theta)=