Home
Class 12
MATHS
If f(x) = sin(2x^2 - 2[x]) for 0 < x < 1...

If `f(x) = sin(2x^2 - 2[x])` for `0 < x < 1,` then `f'(sqrtpi/2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(sin^(2)ax)/(x^(2))" for "x ne 0, f(0)=1 is continuous at x=0 then a=

The function f(x) = {{:((sin(x - 2))/(x - 2),,x ne2),(0,, x = 3):} is discontinous at ………………… .

If f(x) = |(sin x + sin 2x + sin 3x, sin 2x , sin 3x),(3 + 4 sin x, 3, 4 sin x),(1 + sin x, sin x, 1)| then the value of int_0^(-pi//2) f(x) dx equals :

The maximum value of f(x) =2 sin x + sin 2x , in the interval [0, (3)/(2)pi] is

Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", " x= 0):}, at x=0.

Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", " x= 0):}, at x=0.