Home
Class 12
MATHS
x=(sin^(3)t)/sqrt(cos 2t), y=(cos^(3)t)/...

`x=(sin^(3)t)/sqrt(cos 2t), y=(cos^(3)t)/sqrt(cos 2t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t))

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)

If x=(sin^(3)t)/(sqrt(cos2t)) and y=(cos^(3)t)/(sqrt(cos2t)) , then find (dy)/(dx) .

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find (dy)/(dx) . x=(sin^3t)/(sqrt(cos2t)), y=(cos^3t)/(sqrt(cos2t))

x = (sin^3t)/(sqrt(cos 2t)), y = (cos^3 t)/(sqrt(cos 2t)) .

If x and y are connected parametrically by the equation without eliminating the parameter, find (dy/dx) if x=(sin ^3 t)/(sqrt(cos 2 t)), y=(cos ^3 t)/(sqrt(cos 2 t))

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx : x = sin^3t/sqrt cos 2t, y = cos^3t/sqrt cos 2t