Home
Class 12
MATHS
(x+1)(dy)/(dx)+1=2e^(-y)...

` (x+1)(dy)/(dx)+1=2e^(-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-y)(1-(dy)/(dx))=e^(x)

Solve the following differential equations. (i) (dy)/(dx) =(1+y^(2))/(1+x^(2)) (ii) (dy)/(dx) = (sqrt(1-y^(2)))/(sqrt(1-x^(2))) (iii) (dy)/(dx) = 2y tan hx (iv) sqrt(1+x^(2))dx + sqrt(1+y^(2))dy = 0 (v) (dy)/(dy) = e^(x-y)+x^(2)e^(-y)

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

If y=e^sqrtx+e^(-sqrtx) , then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal to