Home
Class 9
MATHS
If 2^a=3^b=6^c then prove that c=(ab)/...

If `2^a=3^b=6^c` then prove that `c=(ab)/(a+b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(a)=3^(b)=6^(c) then show that c=(ab)/(a+b)

If a + b + c = 0 , then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+a)^2/(ca)=3

If a+b+c=0 , then prove that (b+c)^2/(3bc )+ (c+a)^2/(3ca )+ (a+b)^2/(3ab )=1

If a+b+c=0 , then prove that a^2/(bc)+b^2/(ca)+c^2/(ab)=3

If a+b+c=0, then prove that ((b+c)^(2))/(3bc)+((c+a)^(2))/(3ac)+((a+b)^(2))/(3ab)=1

If a,b,c are in G.P.then prove that (a^(2)+ab+b^(2))/(bc+ca+ab)=(b+a)/(c+b)

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

If (a-b), (b-c), (c-a) are in GP then prove that (a+b+c)^2 =3(ab+bc+ca)..

If (a-b),(b-c),(c-a) are in G.P.then prove that (a+b+c)^(2)=3(ab+bc+ca)

if a:b = b:c prove that ((a+b)/(b+c))^2 = (a^2+b^2)/(b^2+c^2) .