Home
Class 11
MATHS
If the circle x^2+y^2+2gx+2fy+c=0 bisect...

If the circle `x^2+y^2+2gx+2fy+c=0` bisects the circumference of the circle `x^2+y^2+2g^(prime)x+2f^(prime)y+c^(prime)=0` then prove that `2g^(prime)(g-g^(prime))+2f^(prime)(f-f^(prime))=c-c '`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle x^2+y^2+2gx+2fy+c=0 bisects the circumference of the circle x^2+y^2+2g'x +2f'y+c'=0 , then :

If the circle x^(2)+y^(2)+2gx+2fy+c=0 bisects the circumference of the circle x^(2)+y^(2)+2g'x+2f'y+c'=0 then prove that 2g'(g-g')+2f'(f-f')=c-c'

If f(x)=(x+3)/(5x^2+x-1) and g(x)=(2x+3x^2)/(20+2x-x^2) such that f(x) and g(x) are differentiable functions in their domains, then which of the following is/are true (a) 2f^(prime)(2)+g^(prime)(1)=0 (b) 2f^(prime)(2)-g^(prime)(1)=0 (c) f^(prime)(1)+2g^(prime)(2)=0 (d) f^(prime)(1)-2g^(prime)(2)=0

If the circles x^2+y^2+2a^(prime)x+2b^(prime)y+c^(prime)=0 and 2x^2+2y^2+2a x+2b y+c=0 intersect othrogonally, then prove that a a^(prime) + b b prime=c+c^(prime)/2dot

If the circles x^2+y^2+2a^(prime)x+2b^(prime)y+c^(prime)=0 and 2x^2+2y^2+2a x+2b y+c=0 intersect othrogonally, then prove that a a^(prime) + b b prime=c+c^(prime)/2dot

The line A x+B y+C=0 cuts the circle x^2+y^2+a x+b y+c=0 at Pa n dQ . The line A^(prime)x+B^(prime)x+C^(prime)=0 cuts the circle x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0 at Ra n dSdot If P ,Q ,R , and S are concyclic, then show that |a-a ' b-b ' c-c ' A B C A ' B ' C '|=0

The line A x+B y+C=0 cuts the circle x^2+y^2+a x+b y+c=0 at Pa n dQ . The line A^(prime)x+B^(prime)x+C^(prime)=0 cuts the circle x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0 at Ra n dSdot If P ,Q ,R , and S are concyclic, then show that |a-a ' b-b ' c-c ' A B C A ' B ' C '|=0

The line A x+B y+C=0 cuts the circle x^2+y^2+a x+b y+c=0 at Pa n dQ . The line A^(prime)x+B^(prime)x+C^(prime)=0 cuts the circle x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0 at Ra n dSdot If P ,Q ,R , and S are concyclic, then show that |a-a ' b-b ' c-c ' A B C A ' B ' C '|=0

Prove that the radical axis of the circles x^2+y^2+2gx +2fy+c=0 and x^2+y^2+2g'x + 2f'y+c'=0 is the diameter of the later circle (or the former bisects the circumference of the later ) if 2g'(g-g')+2f'(f-f')=c-c'