Home
Class 12
MATHS
If sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+...

If `sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26)`, then `n` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n is equal to

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

sum_(r=1)^(n)=(r )/(r^(4)+r^(2)+1) is equal to

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

Let sum_(r=1)^(n)(r^(4))=f(n). Then sum_(r=1)^(n)(2r-1)^(4) is equal to :

Let sum_(r=1)^(n)r^(4)=f(n)," then " sum_(r=1)^(n) (2r-1)^(4) is equal to

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .