Home
Class 12
MATHS
" (a) "(x^(2))/(a^(2))+(y^(2))/(b^(2))=1...

" (a) "(x^(2))/(a^(2))+(y^(2))/(b^(2))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the conics - (x^(2))/(a^(2)) +(y^(2))/(b^(2)) = 1 is

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

Eccentricity of ellipse (x^(2))/(169) + (y^(2))/(25) = 1 and (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 then (a)/(b) = ……..

Find the condition for the following set of curves to intersect orthogonally: (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and xy=c^(2)(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(A^(2))-(y^(2))/(B^(2))=1

(1) Draw the rough sketch of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 . Find the area enclosed by the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 .

If y=m x+c is a tangent to (x^(2))/(a^(2))+(y^(2))/(b^(2)) = 1 then b^(2) =

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

Find the equation of the tangent at the point (x,y) of the curve : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

Find the equation of the normal to the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at (x_(0),y_(0))

Length of common tangents to the hyperbolas (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (y^(2))/(a^(2))-(x^(2))/(b^(2))=1 is