Home
Class 12
MATHS
tan^(-1)(x)/(sqrt(a^(2)-x^(2)))|x|<a...

tan^(-1)(x)/(sqrt(a^(2)-x^(2)))|x|

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following function with respect to x:tan^(-1){(x)/(sqrt(a^(2)-x^(2)))}-a

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .

(d)/(dx)[tan^(-1)((x-sqrt(a^(2)-x^(2)))/(x+sqrt(a^(2)-x^(2))))]=

Prove that tan^(-1)(x/sqrt(a^(2)-x^(2)))=sin^(-1)x/a.

Differentiate tan^(-1){x/(sqrt(a^2-x^2))} , -a

Show that tan^-1(x/(sqrt(a^2-x^2)))=sin^-1(x/a)

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

d//dx[tan^(-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))^(1//2)]