Home
Class 9
MATHS
The factors of x^3-7x+6 are (a)x(x-6)(...

The factors of `x^3-7x+6` are (a)`x(x-6)(x-1)` (b) `(x^2-6)(x-1)` (c)`(x+1)(x+2)(x-3)` (d) `(x-1)(x+3)\ (x-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-1)/(x-2)-(x-2)/(x-3)=(x-5)/(x-6)-(x-6)/(x-7)

Solve (2x-3)/(x-1)+1=(6x-x^(2)-6)/(x-1)

Solve (2x-3)/(x-1)+1=(6x-x^2-6)/(x-1)dot

Solve (2x-3)/(x-1)+1=(6x-x^2-6)/(x-1)dot

(x+1)(x+2)(x+6)=x^(3)+9x^(2)+4(7x-1)

(3x+1)/(6)+(2x-3)/(7)=(x+3)/(8)+(3x-1)/(14)

If (3x)/((x-6)(x+a))=(2)/(x-6)+(1)/(x+a) then

The number of real of the equation (2x -3)/(x-1) +1 =(6x^2 -x-6)/(x-1) is

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)