Home
Class 12
MATHS
" If "e^(x-y)=x^(y)" prove that "(dy)/(d...

" If "e^(x-y)=x^(y)" prove that "(dy)/(dx)=(log x)/((1+log x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))