Home
Class 10
MATHS
" 30."x^(2)+3sqrt(3)x-30=0...

" 30."x^(2)+3sqrt(3)x-30=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve each of the following quadratic equations: x^(2)+3sqrt(3)x-30=0

Factorize the splitting the middle term: x^(2)+3sqrt(3)x-30

Factorize (i) x^2+5sqrt(3)x +12 (ii) x^2+3sqrt(3)x-30

Factorize the following expressions x^2+3sqrt3x-30

(sqrtx^(3)xx3sqrtx^(5))/(5sqrt(x^(3)))xx30sqrt(x^(77))=

The roots of x^(4) - 5x^(3) + 3x^(2) + 19x - 30 = 0 are

The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a n d(x+3)/(-3)=(y+7)/2=(z-6)/4 is a. sqrt(30) b. 2sqrt(30) c. 5sqrt(30) d. 3sqrt(30)

The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a n d(x+3)/(-3)=(y+7)/2=(z-6)/4 is a. sqrt(30) b. 2sqrt(30) c. 5sqrt(30) d. 3sqrt(30)

The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a n d(x+3)/(-3)=(y+7)/2=(z-6)/4 is a. sqrt(30) b. 2sqrt(30) c. 5sqrt(30) d. 3sqrt(30)

The shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is a.sqrt(30)b.2sqrt(30)c.5sqrt(30)d.3sqrt(30)