Home
Class 12
MATHS
10.(1)/(x-sqrt(x))...

10.(1)/(x-sqrt(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(1)/(x)+log_(1-{x})(x^(2)-3x-10)+(1)/(sqrt(2-|x|))+(1)/(sec(sin x)) find the domain of the function.

10. If x=2+sqrt(3) then the value of sqrt(x)+(1)/(sqrt(x))

The value of x, for which the ninth term in the expansion of {sqrt(10)/((sqrt(x))^(5log _(10)x ))+ x.x^(1/(2log_(10)x))}^(10) is 450 is equal to

The value of x, for which the ninth term in the expansion of {sqrt(10)/((sqrt(x))^(5log _(10)x ))+ x.x^(1/(2log_(10)x))}^(10) is 450 is equal to

The value of x, for which the ninth term in the expansion of {sqrt(10)/((sqrt(x))^(5log _(10)x ))+ x.x^(1/(2log_(10)x))}^(10) is 450 is equal to

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

(1)/(sqrt(x)+sqrt(x+1))+(1)/(sqrt(x+1)+sqrt(x+2))+(1)/(sqrt(x+2)+sqrt(x+3))+...(1)/(sqrt(x+98)+sqrt(x+99))

If x_(1),x_(2)&x_(3) are the three real solutions of the equation x^(log_(10)^(2)x+log_(10)x^(3)+3)=(2)/(((1)/(sqrt(x+1-1))-(1)/(sqrt(x+1+1)))) where x_(1)>x_(2)>x_(3), then

Let l_(1)=int_(1)^(10^(4))({sqrt(x)})/(sqrt(x))dx and l_(2)=int_(0)^(10)x{x^(2)}dx where {x} denotes fractional part of x then