Home
Class 12
MATHS
The function y=f(x) is the solution of t...

The function y=f(x) is the solution of the differential equation `[dy]/[dx]+[xy]/[x^2-1]=[x^4+2x]/sqrt[1-x^2]` in (-1, 1), satisfying `f(0)=0`. Then `int_[-sqrt3/2]^[sqrt3/2] f(x)dx` is (A) ` pi/3 - sqrt3/2` (B) ` pi/3 - sqrt3/4` (C) ` pi/6 - sqrt3/4` (D) ` pi/6 - sqrt3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(x y)/(x^2-1)=(x^4+2x)/(sqrt(1-x^2)) in (-1,1) satisfying f(0)=0. Then int_((sqrt(3))/2)^((sqrt(3))/2)f(x)dx is

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(x y)/(x^2-1)=(x^4+2x)/(sqrt(1-x^2)) in (-1,1) satisfying f(0)=0. Then int_((sqrt(3))/2)^((sqrt(3))/2)f(x)dx is

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(x y)/(x^2-1)=(x^4+2x)/(sqrt(1-x^2)) in (-1,1) satisfying f(0)=0. Then int_((sqrt(3))/2)^((sqrt(3))/2)f(x)dx is

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(xy)/(x^(2)-1)=(x^(4)+2x)/(sqrt(1-x^(2)))in(-1,1) satisfying f(0)=0. Then int_((sqrt(3))/(2))^((sqrt(3))/(2))f(x)dx is

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(xy)/(x^(2)-1)=(x^(4)+2x)/(sqrt(1-x^(2))) in (-1, 1) satisfying f(0)=0 . Then underset((-sqrt(3))/(2))overset((sqrt(3))/(2))intf(x)dx is

The fx^n y=f(n) is the sol of diff eq^n (dy)/(dx)+(xy)/(x^2-1)=(x^4+2x)/sqrt(1-x^2) in (-1,1) satisfying f(0)=0 then int_(-sqrt3/2)^(sqrt3/2) f(n)ndx is

sin(pi-6x)+sqrt3 sin(pi/2+6x)=sqrt3

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3