Home
Class 11
MATHS
" 3."quad i^(107)+i^(112)+i^(117)+i^(122...

" 3."quad i^(107)+i^(112)+i^(117)+i^(122)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that i^(107)+i^(112)+i^(117)+i^(122)=0

Prove that: (i) 1+i^(10)+i^(100)-i^(1000)=0 (ii) i^(107)+i^(112)+i^(117)+i^(122)=0 (iii) (1+i^(14)+i^(18)+i^(22)) is real number.

i^(107)+i^(220)+i^(241)+i^(362)=

i+i^(2)+i^(3)+i^(4)

Prove that : i^107+i^112+i^117+i^122=0 .

i+i^(2)+i^(3)+"………"+i^(101)=

i+ i^(2) + i^(3) + i^(4) + …. + i^(100)

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .

The value of i^(0)+i^(1)+i^(2)+i^(3)+i^(4) is

The value of i - i^(2) + i^(3) - i^(4) +.......-i^(100) is equal to a)i b)-i c)1-i d)0