Home
Class 12
MATHS
If y=y(x) satisfies the differential equ...

If `y=y(x)` satisfies the differential equation `8sqrt(x)(sqrt(9+sqrt(x)))dy=(sqrt(4+sqrt(9+sqrt(x))))^(-1)dx ,x >0` and `y(0)=sqrt(7,)` then `y(256)=` (A) 16 (B) 80 (C) 3 (D) 9

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=y(x) satisfies the differential equation 8sqrt(x)(sqrt(9+sqrt(x)))dy=(sqrt(4+sqrt(9+sqrt(x))))^(-1)dx ,x >0a n dy(0)=sqrt(7,) then y(256)= 16 (b) 80 (c) 3 (d) 9

If y=y(x) satisfies the differential equation 8sqrt(x)(sqrt(9+sqrt(x)))dy=(sqrt(4+sqrt(9+sqrt(x))))^(-1)dx ,x >0a n dy(0)=sqrt(7,) then y(256)= 16 (b) 80 (c) 3 (d) 9

Differentiate the following: y=sqrt(x+sqrt(x+sqrt(x)))

Solve the differential equation : y sqrt(1-x^2)dy - sqrt(1+y^2)dx = 0

Solve the differential equation : y sqrt(1-x^2)dy-sqrt(1+y^2)dx =0

Solve the differential equation [(e^(-2sqrt(x)))/(sqrt(x))-y/(sqrt(x))](dx)/(dy)=1(x!=0)

find the solution of differential equation (dy)/(dx)=(sqrt(y))/(sqrt(x))

Differentiate : sqrt(x)+sqrt(y)=sqrt(a)

Differentiate the following : y=sqrt(x+sqrt(x+sqrt(x)))