Home
Class 12
MATHS
If f(2)=2,f^(prime)(2)=1. then lim(x-&gt...

If `f(2)=2,f^(prime)(2)=1.` then `lim_(x->2)(2x^2-4f(x))/(x-2)=` (i)`-4` (ii)`-2` (iii)`2` (iv)`4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

If f(2) = 2 and f^(')(2) = 1 , then lim_(x rarr 2) (2x^(2)-4 f(x))/(x-2) =

If f(2)=4 and f^(prime)(2)=1 , then find (lim)_(x->2)(x\ f(2)-2f\ (x))/(x-2) .

if f(2)=4,f'(2)=1 then lim_(x->2){xf(2)-2f(x)}/(x-2)

If f(2) = 4 and f^(')(2) =1 then lim_(x rarr 2) (x f(2)-2f (x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=4,f'(2)=4 , then evalute lim_(xto2)(xf(2)-2f(x))/(x-2) .

If f(2)=2 and f'(2)=1, and then lim_(x to 2) (2x^(2)-4f(x))/(x-2) is equal to