Home
Class 12
MATHS
Let f(x)=|[secx, x^2, x] , [2sinx, x^3, ...

Let `f(x)=|[secx, x^2, x] , [2sinx, x^3, 2x^2] , [tan3x, x^2, x]|. lim_(x->0) f(x)/x^4=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|[cosx , x , x] , [2sinx , x , 2x] , [sinx , x , x]|, then lim_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

Let f(x)=|[cosx, x, 1], [2sinx ,x,2x],[sinx, x, x]| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

If f(x) = |(sin x, cos x , tan x),(x^3, x^2 ,x),(2x, 1,x)| then Lim_(x to 0) (f(x))/(x^2) equals

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

" If "f(x)=|[x,sin x,cos x],[x^(2),tan x,-x^(3)],[2x,sin2x,5x]|" ,then "lim_(x rarr0)(f'(x))/(x)=