Home
Class 12
MATHS
[" If "sin^(-1)(2p)/(1+p^(2))-cos^(-1)(1...

[" If "sin^(-1)(2p)/(1+p^(2))-cos^(-1)(1-q^(2))/(1+q^(2))=tan^(-1)(2x)/(1-x^(2))],[" then what is "x" equal to "?]

Promotional Banner

Similar Questions

Explore conceptually related problems

If Sin^(-1)(2p)/(1+p^(2)) - Cos^(-1)((1-q^(2))/(1+q^(2))) = Tan^(-1) (2x)/(1-x^(2)) , then prove that x = (p-q)/(1+pq)

if quad sin^(-1)((2p)/(1+p^(2)))-cos^(-1)((1-q^(2))/(1+q^(2)))=tan^((2 pi)/(1-z^(2))) prove that x=(p-q)/(1+pq) where p,q varepsilon(0,1)

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

If cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1)((2x)/(1+x^(2)))=p for all x in[-1,0] , then p is equal to

If cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1)((2x)/(1+x^(2)))=p for all x in[-1,0] , then p is equal to

If cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1)((2x)/(1+x^(2)))=p for all x in[-1,0] , then p is equal to

int((p+q tan^(-1)x))/(1+x^(2))dx

int(dx)/((1+x^(2))sqrt(p^(2)+q^(2)(tan^(-1)x)^(2)))

tan ^(-1)""(1)/(p+q)+tan ^(-1)""(q)/(p^(2)+pq+1)=cot^(-1)p