Home
Class 12
MATHS
The jump value of the function at the po...

The jump value of the function at the point of the discontinuity of the function `f(x)=(1-k^(1/x))/(1+k^(1/x))`(k>0) (k=1) is: (A) 4 (B) 2 (C) 3 (D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The jump value of the function at the point of the discontinuity of the function f(x)=(1-k^(1//x))/(1+k^(1//x))(kgt0) is

The jump value of the function at the point of the discontinuity of the function f(x)=(1-k^(1//x))/(1+k^(1//x))(kgt0) is (a) 4 (b) 2 (c) 3 (d) none of these

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is (a) 0 (b) 1 (c) -1 (d) None of these

The value of k for which the function f(x)=((x)/(e^(x)-1)+(x)/(k)+1) is an even function

If f(x)=1/(1-x), then the set of points discontinuity of the function f(f(f(x)))i s {1} (b) {0,1} (c) {-1,1} (d) none of these

If f(x)=(1)/(1-x), then the set of points discontinuity of the function f(f(f(x))) is {1} (b) {0,1} (c) {-1,1} (d) none of these

If f(x)=1/(1-x), then the set of points discontinuity of the function f(f(f(x)))i s {1} (b) {0,1} (c) {-1,1} (d) none of these

If f(x)=1/(1-x), then the set of points discontinuity of the function f(f(f(x)))i s {1} (b) {0,1} (c) {-1,1} (d) none of these

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e