Home
Class 12
MATHS
1+(1-1.2^2)+(1-3.4^2)+(1-5.6^2)+.....(1-...

`1+(1-1.2^2)+(1-3.4^2)+(1-5.6^2)+.....(1-19.20^2) = alpha-220beta` find`(alpha,beta)`

A

`(10,103)`

B

`(11,103)`

C

`(10,107)`

D

`(11,97)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(1 + (1 - 1 \cdot 2^2) + (1 - 3 \cdot 4^2) + (1 - 5 \cdot 6^2) + \ldots + (1 - 19 \cdot 20^2) = \alpha - 220\beta\), we will break it down step by step. ### Step 1: Identify the series The series can be expressed as: \[ S = 1 + \sum_{n=1}^{10} \left(1 - (2n-1)(2n)^2\right) \] This is because the odd numbers \(1, 3, 5, \ldots, 19\) correspond to \(2n-1\) where \(n\) ranges from \(1\) to \(10\) and the even numbers \(2, 4, 6, \ldots, 20\) correspond to \(2n\). ### Step 2: Simplify the series We can separate the constant \(1\) from the summation: \[ S = 1 + \sum_{n=1}^{10} \left(1 - (2n-1)(2n)^2\right) = 1 + \sum_{n=1}^{10} 1 - \sum_{n=1}^{10} (2n-1)(2n)^2 \] The first summation gives \(10\) since there are \(10\) terms of \(1\): \[ S = 1 + 10 - \sum_{n=1}^{10} (2n-1)(2n)^2 \] Thus, \[ S = 11 - \sum_{n=1}^{10} (2n-1)(2n)^2 \] ### Step 3: Calculate the summation Now we need to calculate: \[ \sum_{n=1}^{10} (2n-1)(2n)^2 = \sum_{n=1}^{10} (2n-1) \cdot 4n^2 = 4 \sum_{n=1}^{10} (2n^3 - n^2) \] This can be split into two separate sums: \[ = 4 \left(2\sum_{n=1}^{10} n^3 - \sum_{n=1}^{10} n^2\right) \] ### Step 4: Use formulas for summation Using the formulas for the sums of cubes and squares: \[ \sum_{n=1}^{k} n^3 = \left(\frac{k(k+1)}{2}\right)^2 \] \[ \sum_{n=1}^{k} n^2 = \frac{k(k+1)(2k+1)}{6} \] For \(k = 10\): \[ \sum_{n=1}^{10} n^3 = \left(\frac{10 \cdot 11}{2}\right)^2 = 55^2 = 3025 \] \[ \sum_{n=1}^{10} n^2 = \frac{10 \cdot 11 \cdot 21}{6} = 385 \] ### Step 5: Substitute back into the equation Now substituting these values back: \[ \sum_{n=1}^{10} (2n-1)(2n)^2 = 4 \left(2 \cdot 3025 - 385\right) = 4(6050 - 385) = 4 \cdot 5665 = 22660 \] ### Step 6: Final calculation of S Now substituting back into \(S\): \[ S = 11 - 22660 = -22649 \] ### Step 7: Compare with the given form We have: \[ -22649 = \alpha - 220\beta \] This can be rearranged to find \(\alpha\) and \(\beta\). ### Step 8: Finding \(\alpha\) and \(\beta\) To express \(-22649\) in the form \(\alpha - 220\beta\), we can set \(\alpha = -22649 + 220\beta\). Choosing \(\beta = 103\): \[ \alpha = -22649 + 220 \cdot 103 = -22649 + 22660 = 11 \] Thus, we find: \[ \alpha = 11, \quad \beta = 103 \] ### Final Answer \((\alpha, \beta) = (11, 103)\)
Promotional Banner

Similar Questions

Explore conceptually related problems

If |alpha|lt1,|beta|lt1 1-alpha+alpha^(2)-alpha^(3)+ . . . . ."to "oo=s_(1) 1-beta+beta^(2)-beta^(3)+ . . . ."to "oo=s_(2) , then 1-alphabeta+alpha^(2)beta^(2)+ . . . . ."to "oo equals

Let -(1)/(6) beta_(1) and alpha_(2)>beta_(2), then alpha_(1)+beta_(2) equals

If sin alpha=1/2 and cos beta=1/2 then alpha+beta=

if alpha,beta are the roots of ax^(2)+bx+c=0, then find the equation whose roots (1)(1)/(alpha^(2)),(1)/(beta^(2)) and (2) (1)/(a alpha+b),(1)/(a beta+b) and (3)alpha+(1)/(beta),beta+(1)/(alpha)

If alpha+beta=1 , and alpha.beta=-(3)/(2) , then find alpha^(2)+beta^(2)=

sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2)quad 0<=alpha,beta,<=(pi)/(2), then find tan(alpha+2 beta) and tan(2 alpha+beta)

If alpha,beta re the roots of ax^(2)+c=bx, then the equation (a+cy)^(2)=b^(2)y in y has the roots a.alpha beta^(-1),alpha^(-1)beta b.alpha^(-2),beta^(-2) c.alpha^(-1),beta^(-1) d.alpha^(2),beta^(2)

Let -pi/6 beta_1 and alpha_2>beta_2 then alpha_1+beta_2 equals

If the roots of a_(1)x^(2)+b_(1)x+c_(1)=0 are alpha_(1),beta_(1) and those of a_(2)x^(2)+b_(2)x+c_(2)=0 are alpha_(2),beta_(2) such that alpha_(1)alpha_(2)=beta_(1)beta_(2)=1 then

If tan^(-1)(alpha+i beta)=a+ib, then a= 1). (1)/(2)tan^(-1)((2 alpha)/(1-alpha^(2)-beta^(2))) 2) . (1)/(2)tan^(-1)((2 alpha)/(1+alpha^(2)+beta^(2))) 3). tan^(-1)((2 alpha)/(1-alpha^(2)-beta^(2))) 4). (1)/(2)tan^(-1)((2 beta)/(1+alpha^(2)+beta^(2)))