Home
Class 12
MATHS
If f(x)=|x-2|, x in [0,4] and g(x)=f(f(x...

If `f(x)=|x-2|, x in [0,4]` and `g(x)=f(f(x))`. Find `int_2^3 (g(x)-f(x))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral \( \int_2^3 (g(x) - f(x)) \, dx \) where \( f(x) = |x - 2| \) and \( g(x) = f(f(x)) \). ### Step 1: Determine \( f(x) \) The function \( f(x) = |x - 2| \) can be expressed piecewise based on the value of \( x \): - For \( x < 2 \): \( f(x) = 2 - x \) - For \( x \geq 2 \): \( f(x) = x - 2 \) ### Step 2: Find \( f(x) \) for the interval [2, 3] Since we are interested in the interval from 2 to 3: - At \( x = 2 \): \( f(2) = |2 - 2| = 0 \) - At \( x = 3 \): \( f(3) = |3 - 2| = 1 \) Thus, for \( x \) in [2, 3], \( f(x) = x - 2 \). ### Step 3: Determine \( g(x) = f(f(x)) \) Next, we need to find \( g(x) \): 1. **Calculate \( f(x) \)**: - For \( x \in [2, 3] \): \( f(x) = x - 2 \) 2. **Calculate \( f(f(x)) \)**: - For \( x \in [2, 3] \): \( f(x) = x - 2 \) which ranges from \( 0 \) to \( 1 \) as \( x \) goes from \( 2 \) to \( 3 \). - Since \( f(x) \) is in the range [0, 1], we use the first case of \( f(x) \): - \( f(f(x)) = f(x - 2) = 2 - (x - 2) = 4 - x \) Thus, for \( x \in [2, 3] \), \( g(x) = 4 - x \). ### Step 4: Calculate \( g(x) - f(x) \) Now we can find \( g(x) - f(x) \): \[ g(x) - f(x) = (4 - x) - (x - 2) = 4 - x - x + 2 = 6 - 2x \] ### Step 5: Set up the integral We need to evaluate the integral: \[ \int_2^3 (g(x) - f(x)) \, dx = \int_2^3 (6 - 2x) \, dx \] ### Step 6: Evaluate the integral Calculating the integral: \[ \int (6 - 2x) \, dx = 6x - x^2 + C \] Now we evaluate from 2 to 3: \[ \left[ 6x - x^2 \right]_2^3 = \left( 6(3) - (3)^2 \right) - \left( 6(2) - (2)^2 \right) \] Calculating the values: 1. At \( x = 3 \): \[ 6(3) - (3)^2 = 18 - 9 = 9 \] 2. At \( x = 2 \): \[ 6(2) - (2)^2 = 12 - 4 = 8 \] Thus, the integral evaluates to: \[ 9 - 8 = 1 \] ### Final Answer The value of the integral \( \int_2^3 (g(x) - f(x)) \, dx \) is \( 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-2| and g(x)=f(f(x)), then for 2

If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

Evaluate: if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx

If f(x)=x^4+3 and g(x)=x+6 , then find (f+g)(2)

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

If f(2-x)=f(2+x),f(4+x)=f(4-x) and int_(0)^(2)f(x)dx=5 then int_(0)^(50)f(x)dx is

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=