Home
Class 12
MATHS
A=[[costheta,isintheta],[isintheta,costh...

`A=[[costheta,isintheta],[isintheta,costheta]]` and `A^5=[[a,d],[b,c]]`. Then which one is correct.

A

`a^2-d^2=0`

B

`a^2+c^2=1`

C

`a^2-c^2=3/2`

D

`a^2-b^2=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and its powers. The matrix \( A \) is defined as: \[ A = \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix} \] According to the theorem mentioned in the video, for a matrix of this form, the \( n \)-th power of \( A \) can be expressed as: \[ A^n = \begin{bmatrix} \cos(n\theta) & i \sin(n\theta) \\ i \sin(n\theta) & \cos(n\theta) \end{bmatrix} \] Given that \( A^5 = \begin{bmatrix} a & d \\ b & c \end{bmatrix} \), we can substitute \( n = 5 \) into the theorem: \[ A^5 = \begin{bmatrix} \cos(5\theta) & i \sin(5\theta) \\ i \sin(5\theta) & \cos(5\theta) \end{bmatrix} \] From this, we can identify: - \( a = \cos(5\theta) \) - \( d = i \sin(5\theta) \) - \( b = i \sin(5\theta) \) - \( c = \cos(5\theta) \) Now, we need to check the options provided in the problem statement. We will evaluate the following expressions: 1. \( a^2 - d^2 \) 2. \( a^2 - b^2 - d^2 \) 3. \( a^2 + c^2 \) 4. \( a^2 - b^2 \) ### Step 1: Calculate \( a^2 - d^2 \) \[ a^2 = \cos^2(5\theta) \] \[ d^2 = (i \sin(5\theta))^2 = -\sin^2(5\theta) \] Thus, we have: \[ a^2 - d^2 = \cos^2(5\theta) - (-\sin^2(5\theta)) = \cos^2(5\theta) + \sin^2(5\theta) = 1 \] ### Step 2: Calculate \( a^2 - b^2 - d^2 \) \[ b^2 = (i \sin(5\theta))^2 = -\sin^2(5\theta) \] So, \[ a^2 - b^2 - d^2 = \cos^2(5\theta) - (-\sin^2(5\theta)) - (-\sin^2(5\theta)) \] This simplifies to: \[ \cos^2(5\theta) + \sin^2(5\theta) + \sin^2(5\theta) = 1 + \sin^2(5\theta) \] This expression is not equal to 1 for all values of \( \theta \). ### Step 3: Calculate \( a^2 + c^2 \) Since \( c = \cos(5\theta) \): \[ a^2 + c^2 = \cos^2(5\theta) + \cos^2(5\theta) = 2\cos^2(5\theta) \] This is not equal to 1 unless \( \cos(5\theta) = \frac{1}{\sqrt{2}} \). ### Step 4: Calculate \( a^2 - b^2 \) \[ a^2 - b^2 = \cos^2(5\theta) - (-\sin^2(5\theta)) = \cos^2(5\theta) + \sin^2(5\theta) = 1 \] ### Conclusion From the calculations, we find: - \( a^2 - d^2 = 1 \) (True) - \( a^2 - b^2 - d^2 = 1 + \sin^2(5\theta) \) (Not always true) - \( a^2 + c^2 = 2\cos^2(5\theta) \) (Not always true) - \( a^2 - b^2 = 1 \) (True) Thus, the correct options are those that yield \( 1 \). ### Final Answer The correct option is: - \( a^2 - d^2 = 1 \) - \( a^2 - b^2 = 1 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If {:A=[(cos theta,-sintheta),(sintheta,costheta)]:} , then which one of the following is not correct?

If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=

Find (costheta+isintheta)^n

If A=[{:(Costheta ,isintheta),("isintheta,costheta):}],(theta=pi/24)and A^(5)=[(a,b),(c,d)], where i=sqrt(-1) then, which one of the following is not true ?

(cos3theta+isin3theta)^5/(costheta+isintheta)^6

If A=[[costheta,isintheta],[isintheta,costheta]], then prove by principal of mathematical induction that A^n=[[cosntheta, i sinn theta],[isin n theta, cos n theta]] for all nin NN.

If A=[(costheta,sintheta),(-sintheta,costheta)] and A(a d j\ A)=[(k,0),( 0,k)] , then find the value of k .

If I= [[1,0],[0,1]] , J = [[0,1],[-1,0]] and B = [[costheta, sintheta],[-sintheta, costheta]] , then B= (A) Icostheta+Jsintheta (B) Icostheta-Jsintheta (C) Isintheta+Jcostheta (D) -Icostheta+Jsintheta

Evaluate (costheta-isintheta)^n

If a=costheta+isintheta,b=cos2theta-isin2theta,c=cos3theta+i sin3theta and if |[a,b,c],[b,c,a],[c,a,b]|=0 then a.theta=2kpi, k in Z b. theta=(2k+1)pi, k in Z c. theta=(4k+1)pi, k in Z d. none of these