Home
Class 12
MATHS
If f(x)=intsqrt(x)/(x+1)^2dx, find f(3)-...

If `f(x)=intsqrt(x)/(x+1)^2dx`, find `f(3)-f(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f(3) - f(1) \) where \( f(x) = \int \frac{\sqrt{x}}{(x+1)^2} \, dx \). ### Step 1: Set up the integral We start with the function: \[ f(x) = \int \frac{\sqrt{x}}{(x+1)^2} \, dx \] ### Step 2: Use substitution We will use the substitution \( x = \tan^2 \theta \). Then, we have: \[ dx = 2 \tan \theta \sec^2 \theta \, d\theta \] Also, note that: \[ \sqrt{x} = \tan \theta \] and \[ x + 1 = \tan^2 \theta + 1 = \sec^2 \theta \] ### Step 3: Rewrite the integral Substituting these into the integral gives: \[ f(x) = \int \frac{\tan \theta}{\sec^4 \theta} \cdot 2 \tan \theta \sec^2 \theta \, d\theta \] This simplifies to: \[ f(x) = 2 \int \frac{\tan^2 \theta}{\sec^2 \theta} \, d\theta = 2 \int \sin^2 \theta \, d\theta \] ### Step 4: Integrate \( \sin^2 \theta \) Using the identity \( \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \): \[ f(x) = 2 \int \frac{1 - \cos(2\theta)}{2} \, d\theta = \int (1 - \cos(2\theta)) \, d\theta \] Integrating gives: \[ f(x) = \theta - \frac{1}{2} \sin(2\theta) + C \] ### Step 5: Back substitute for \( \theta \) Recall that \( \theta = \tan^{-1}(\sqrt{x}) \). Thus: \[ f(x) = \tan^{-1}(\sqrt{x}) - \frac{1}{2} \sin(2 \tan^{-1}(\sqrt{x})) + C \] Using the double angle formula, \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \): \[ \sin(2 \tan^{-1}(\sqrt{x})) = \frac{2 \sqrt{x}}{1+x} \] So, \[ f(x) = \tan^{-1}(\sqrt{x}) - \frac{\sqrt{x}}{1+x} + C \] ### Step 6: Calculate \( f(3) \) and \( f(1) \) Now, we need to find \( f(3) \) and \( f(1) \): 1. For \( f(3) \): \[ f(3) = \tan^{-1}(\sqrt{3}) - \frac{\sqrt{3}}{4} + C = \frac{\pi}{3} - \frac{\sqrt{3}}{4} + C \] 2. For \( f(1) \): \[ f(1) = \tan^{-1}(1) - \frac{1}{2} + C = \frac{\pi}{4} - \frac{1}{2} + C \] ### Step 7: Compute \( f(3) - f(1) \) Now, we compute: \[ f(3) - f(1) = \left( \frac{\pi}{3} - \frac{\sqrt{3}}{4} + C \right) - \left( \frac{\pi}{4} - \frac{1}{2} + C \right) \] The constants \( C \) cancel out: \[ f(3) - f(1) = \frac{\pi}{3} - \frac{\pi}{4} - \frac{\sqrt{3}}{4} + \frac{1}{2} \] Finding a common denominator (12): \[ = \frac{4\pi}{12} - \frac{3\pi}{12} - \frac{3\sqrt{3}}{12} + \frac{6}{12} \] \[ = \frac{\pi + 6 - 3\sqrt{3}}{12} \] ### Final Answer Thus, the final result is: \[ f(3) - f(1) = \frac{\pi + 6 - 3\sqrt{3}}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x)=(x-1)/(x+1), then find f{f(x)}

If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(f(2)))))

If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(2)))))

If f(x)=(x-1)/(x+1), f^2(x)=f(f(x)), …f^(k+1)(x)=f(f^k(x)),k=1,2,3,… then -4int_(1/e)^1f^2010(x)dx=…

If f'(x)=x-3/x^2,f(1)=11/2 , find f(x).

If 2f(x)-3f((1)/(x))=x^(2),x!=0, then find f(2)

If f(x)=x^(2)+3x-5, find f(0),f(1) and f((1)/(2))

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=