Home
Class 12
MATHS
xy'-y=x^2(xcosx+sinx) and if f(pi)=pi th...

`xy'-y=x^2(xcosx+sinx)` and if `f(pi)=pi` then find `f''(pi/2)+f(pi/2)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation \( xy' - y = x^2(x \cos x + \sin x) \) with the condition \( f(\pi) = \pi \), we need to find \( f''(\frac{\pi}{2}) + f(\frac{\pi}{2}) \). ### Step 1: Rewrite the equation We start by rewriting the equation: \[ xy' - y = x^2(x \cos x + \sin x) \] Dividing both sides by \( x \): \[ y' - \frac{y}{x} = x(x \cos x + \sin x) \] ### Step 2: Identify \( p \) and \( q \) This is a first-order linear ordinary differential equation of the form: \[ y' + p y = q \] where \( p = -\frac{1}{x} \) and \( q = x(x \cos x + \sin x) \). ### Step 3: Find the integrating factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p \, dx} = e^{\int -\frac{1}{x} \, dx} = e^{-\ln |x|} = \frac{1}{x} \] ### Step 4: Multiply through by the integrating factor Multiplying the entire equation by the integrating factor: \[ \frac{y}{x} - \frac{y}{x^2} = x^2 \cos x + x \sin x \] This simplifies to: \[ \frac{d}{dx}\left(\frac{y}{x}\right) = x \cos x + \sin x \] ### Step 5: Integrate both sides Integrating both sides: \[ \frac{y}{x} = \int (x \cos x + \sin x) \, dx \] ### Step 6: Solve the integral Using integration by parts for \( \int x \cos x \, dx \): Let \( u = x \) and \( dv = \cos x \, dx \): \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x \] Thus, \[ \int (x \cos x + \sin x) \, dx = x \sin x + \cos x - \cos x + C = x \sin x + C \] ### Step 7: Solve for \( y \) So we have: \[ \frac{y}{x} = x \sin x + C \] Multiplying through by \( x \): \[ y = x^2 \sin x + Cx \] ### Step 8: Apply the initial condition Using the condition \( f(\pi) = \pi \): \[ f(\pi) = \pi^2 \sin(\pi) + C\pi = \pi \] Since \( \sin(\pi) = 0 \): \[ C\pi = \pi \implies C = 1 \] Thus, the function becomes: \[ f(x) = x^2 \sin x + x \] ### Step 9: Find \( f(\frac{\pi}{2}) \) Now, we calculate \( f(\frac{\pi}{2}) \): \[ f\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^2 \sin\left(\frac{\pi}{2}\right) + \frac{\pi}{2} = \frac{\pi^2}{4} + \frac{\pi}{2} \] ### Step 10: Find \( f''(x) \) Next, we need to find \( f''(x) \): 1. First derivative: \[ f'(x) = 2x \sin x + x^2 \cos x + 1 \] 2. Second derivative: \[ f''(x) = 2 \sin x + 2x \cos x + 2x \cos x - x^2 \sin x = 2 \sin x + 4x \cos x - x^2 \sin x \] ### Step 11: Evaluate \( f''(\frac{\pi}{2}) \) Now, we evaluate \( f''\left(\frac{\pi}{2}\right) \): \[ f''\left(\frac{\pi}{2}\right) = 2 \sin\left(\frac{\pi}{2}\right) + 4\left(\frac{\pi}{2}\right) \cos\left(\frac{\pi}{2}\right) - \left(\frac{\pi}{2}\right)^2 \sin\left(\frac{\pi}{2}\right) \] \[ = 2(1) + 0 - \frac{\pi^2}{4} = 2 - \frac{\pi^2}{4} \] ### Step 12: Calculate \( f''(\frac{\pi}{2}) + f(\frac{\pi}{2}) \) Finally, we compute: \[ f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) = \left(2 - \frac{\pi^2}{4}\right) + \left(\frac{\pi^2}{4} + \frac{\pi}{2}\right) \] \[ = 2 + \frac{\pi}{2} \] Thus, the final answer is: \[ \boxed{2 + \frac{\pi}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=k(cos x-sinx) , f'(0)=3 , f((pi)/(2))=15 , find f(x)

If int(cosecx+sinx)/(cosecsecx+tansin^2x)dx=f(x) and f(pi/2)=1 then f(pi/4)

Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))

"Let " f(x)=int x^(sinx)(1+xcosx*In x+sinx)dx " and " f((pi)/(2))=(pi^(2))/(4). " Then the value of " cos f(pi) " is"- .

Consider a function, f(x)=2/3ln^(3/2) (sinx+cosx) for x in (0,pi/2) The value of Lim_(x->pi/2) f(x)/(pi/2-x)^(3/2)

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

If f(x) is contiuous at x= pi/2 , where f(x)=(cosec x - sin x)/(pi/2 - x)", for " x != pi/2 , then f(pi/2)=

If f(x)=2sinx-x^(2) , then in x in [0, pi]