Home
Class 12
MATHS
If y = sin mx then the value of |[y,y1,y...

If `y = sin mx` then the value of `|[y,y_1,y_2],[y_3,y_4,y_5],[y_6,y_5,y_7]|` where `y` shows the order of derivative) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sinp x and y_n is the n t h derivative of y , then |[y, y_1,y_2],[y_3,y_4,y_5],[y_6,y_7,y_8]|i s (a)1 (b) 0 (c) -1 (d) none of these

If y=sinp x and y_n is the n t h derivative of y , then |[y, y_1,y_2],[y_3,y_4,y_5],[y_6,y_7,y_8]|i s (a)1 (b) 0 (c) -1 (d) none of these

If y=sinp xa n dy_n is the n t h derivative of y , then |[y, y_1,y_2],[y_3,y_4,y_5],[y_6,y_7,y_8]|i s (a)1 (b) 0 (c) -1 (d) none of these

If y=sinp xa n dy_n is the n t h derivative of y , then |[y, y_1,y_2],[y_3,y_4,y_5],[y_6,y_7,y_8]|i s (a)1 (b) 0 (c) -1 (d) none of these

If y = cos ax, prove that | (y, y_1, y_2), (y_3, y_4, y_5), (y_6, y_7, y_8) | = 0 where y_r = d ^ r / (dx ^ r) .y

If y=sin mx the value of the determinant |{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_8):}| where y_(n)=(d^(n)y)/(dx^(n)) is

If y=sin mx the value of the determinant |{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_8):}| where y_(n)=(d^(n)y)/(dx^(n)) is

If 3(5-y)=4(3y+2)+27 ,then the value of y is.

if y= sin mx, them the value of the determinant |{:(y,,y_(1),,y_(2)),(y_(3),,y_(4),,y_(5)),(y_(6),,y_(7),,y_(8)):}|" Where " y_(n)=(d^(n)y)/(dx^(n)) " is "