Home
Class 12
MATHS
n=(1)/(21)sqrt((F)/(m))...

n=(1)/(21)sqrt((F)/(m))

Promotional Banner

Similar Questions

Explore conceptually related problems

Check the accuracy of the equation n = (1)/(2l)sqrt((F)/(m)) where l is the length of the string, m its mass per unit length, F the stretching force and n the frequency of vibration.

If ratio of the roots of the equation ax^(2)+bx+c=0 is m:n then (A) (m)/(n)+(n)/(m)=(b^(2))/(ac) (B) sqrt((m)/(n))+sqrt((n)/(m))=(b)/(sqrt(ac))],[" (C) sqrt((m)/(n))+sqrt((n)/(m))=(b^(2))/(ac)]

If f (theta)=4/3 (1- cos ^(6) theta - sin ^(6)theta), then lim _(xtoo) 1/n [sqrt(f ((1)/(n)))+sqrt(f ((2)/(n)))+sqrt(f((n)/(n)))]=

If f (theta)=4/3 (1- cos ^(6) theta - sin ^(6)theta), then lim _(ntooo) 1/n [sqrt(f ((1)/(n)))+sqrt(f ((2)/(n)))+sqrt(f((n)/(n)))]=

If a line lies in the octant OXYZ and it makes equal angles with the axes, then: a) l=m=n=(1)/(sqrt(3)) b) l=m=n=pm(1)/(sqrt(3)) c) l=m=n=-(1)/(sqrt(3)) d) l=m=n=pm(1)/(sqrt(2))

If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in N , then the minimum value of n+m is equal to

Show that f(x) = sin^(m)x. cos^(n)x has maximum value at x = Tan^(-1) sqrt((m)/(n)) (m, n gt 0) .

Show that (1)/(log_(n)m)+(1)/(log_(sqrt(n))m)+(1)/(log_(3sqrt(n))m(1)/(4))+......(1)/(log_(10sqrt(n))m)=log_(m)n^(55)

A=(1,3,-2) is a vertex of triangle ABC whose centroid is G=(-1,4,2) then length of median through A is sqrt(21) 3sqrt(21) sqrt(21)/2 (3sqrt(21))/(2)