Home
Class 10
MATHS
" (sin "^(8)theta-cos^(8)theta)=(sin^(2)...

" (sin "^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta*cos^(2)theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sin^(8)theta-cos^(8)theta=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)thetacos^(2)theta)

Prove the following identities: sin^8theta-cos^8theta=(sin^2theta-cos^2theta)(1-2sin^2thetacos^2theta)

Prove the following: sin^8theta-cos^8theta=(sin^2theta-cos^2theta)(1-2sin^2thetacos^2theta)

Prove the following identities: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0 sin^6theta+cos^6theta+3sin^2thetacos^2theta=1 (sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)

(sin^(8)theta-cos^(8)theta)/(cos2theta(1+cos^(2)2theta))=?

Prove the following identity: ((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cos ec^(2)theta-sin^(2)theta))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)cos^(2)theta)

Prove that : sin^8 theta- cos^8 theta= (sin^2 theta- cos^2 theta)(1-2 sin^2 theta cos^2 theta) .

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to