Home
Class 10
MATHS
If sin3A=cos(A-26^@), where 3A is an a...

If `sin3A=cos(A-26^@)`, where 3A is an acute angle, find the value of A.

Text Solution

AI Generated Solution

To solve the equation \( \sin 3A = \cos(A - 26^\circ) \), where \( 3A \) is an acute angle, we can follow these steps: ### Step 1: Use the co-function identity We know that \( \sin \theta = \cos(90^\circ - \theta) \). Therefore, we can rewrite the left side of the equation: \[ \sin 3A = \cos(90^\circ - 3A) \] Now, we have: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin 3A = cos(A - 26^@) , where 3A is an acute angle, find the value of A.

If sec 2A=cosec (A-42^@) , where 2A is an acute angle, find the value of A.

If sec4A=cos ec(A-20^(@)), where 4A is an acute angle,find the value of A .

If tan2A=cot (A-12^@) , where 2A is an acute angle, find the value of A.

If sec4A ="cosec"(A-20^@) where 4A is an acute angle , find the value of A.

If sec 4A=cosec (A-15^@) , where 4A is an acute angle, find the value of A.

If tan2A=cot(A-18^(@)) where 2A is an acute angle, find the value of A.

If sin 3A =cos(A-10^(@)) where 3A is an acute angle , then find the value of A.

If tan A =cot (A-18^(@)) where 2A is an acute angle , find the value of A.