Home
Class 12
MATHS
Let f(x) = |(2cos^2x, sin2x, -sinx), (si...

Let `f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|`, the value of `int_0^(pi//2){f(x) + f'(x)} dx,` is (i)`pi/2` (ii)`pi` (iii)`(3pi)/2` (iv)`2pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x)= |{:(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0):}| ,"then find " 1/piint_0^(pi/2)[f(x)+f'(x)]dx.

If f(x)=|{:(2cos^(2)x,sin2x,-sinx),(sin2x,2sin^(2)x,cosx),(sinx,-cosx,0):}|" then "int_(0)^(pi//2)[f(x)+f'(x)]dx=

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx,-cosx,0)| then int_(0)^(pi//2){Delta(x)+Delta'(x)]dx equals

f(x)=|2cos^(2)x sin2x-sin x sin2x2sin^(2)x cos x sin x-cos x0| Then the value of int_(0)^( pi/2)[f(x)+f'(x)]dx is a. pi b.pi/2c.2 pi d.3 pi/2