Home
Class 12
MATHS
If the line lx+my +n=0 touches the e...

If the line lx+my +n=0 touches the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

Find the condition that the straight line lx+my=n touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then show a^2 l^2 - b^2 m^2 =n^2

If the line lx+my=1 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then (a^(2))/(l^(2))+(b^(2))/(m^(2))=

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

Show that the line lx + my = 1 will touch the ellipse (x ^(2))/( a ^(2)) + (y ^(2))/(b ^(2)) =1 if a ^(2) l ^(2) + b ^(2)m ^(2) = 1.

If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .

If the line lx+my+n=0 cuts the ellipse ((x^(2))/(a^(2)))+((y^(2))/(b^(2)))=1 at points whose eccentric angles differ by (pi)/(2), then find the value of (a^(2)l^(2)+b^(2)m^(2))/(n^(2))