Home
Class 12
MATHS
If (a+sqrt(2)bcosx)(a-sqrt(2)bcosy)=a^2-...

If `(a+sqrt(2)bcosx)(a-sqrt(2)bcosy)=a^2-b^2`, find `(dx)/(dy)` at `(pi/4,pi/4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to differentiate the equation \((a + \sqrt{2}b \cos x)(a - \sqrt{2}b \cos y) = a^2 - b^2\) and find \(\frac{dx}{dy}\) at the point \((\frac{\pi}{4}, \frac{\pi}{4})\). ### Step-by-Step Solution: 1. **Identify the equation:** \[ (a + \sqrt{2}b \cos x)(a - \sqrt{2}b \cos y) = a^2 - b^2 \] 2. **Differentiate both sides with respect to \(x\):** Using the product rule on the left-hand side: \[ \frac{d}{dx}[(a + \sqrt{2}b \cos x)(a - \sqrt{2}b \cos y)] = 0 \] Let \(u = a + \sqrt{2}b \cos x\) and \(v = a - \sqrt{2}b \cos y\). Then, \[ \frac{du}{dx} = -\sqrt{2}b \sin x \] and \[ \frac{dv}{dx} = 0 \quad \text{(since \(y\) is treated as a constant with respect to \(x\))} \] Applying the product rule: \[ u \frac{dv}{dx} + v \frac{du}{dx} = 0 \] This simplifies to: \[ v(-\sqrt{2}b \sin x) = 0 \] 3. **Differentiate with respect to \(y\):** Now, differentiate with respect to \(y\): \[ \frac{d}{dy}[(a + \sqrt{2}b \cos x)(a - \sqrt{2}b \cos y)] = 0 \] Here, we have: \[ \frac{du}{dy} = 0 \] and \[ \frac{dv}{dy} = \sqrt{2}b \sin y \] Applying the product rule: \[ u \frac{dv}{dy} + v \frac{du}{dy} = 0 \] This simplifies to: \[ u(\sqrt{2}b \sin y) = 0 \] 4. **Evaluate at \((\frac{\pi}{4}, \frac{\pi}{4})\):** Substitute \(x = \frac{\pi}{4}\) and \(y = \frac{\pi}{4}\): \[ \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] Substitute these values into \(u\) and \(v\): \[ u = a + \sqrt{2}b \cdot \frac{1}{\sqrt{2}} = a + b \] \[ v = a - \sqrt{2}b \cdot \frac{1}{\sqrt{2}} = a - b \] 5. **Set up the equations:** From the differentiated equations: \[ (a - b)(-\sqrt{2}b \cdot \frac{1}{\sqrt{2}}) = 0 \quad \Rightarrow \quad (a - b)(-b) = 0 \] \[ (a + b)(\sqrt{2}b \cdot \frac{1}{\sqrt{2}}) = 0 \quad \Rightarrow \quad (a + b)(b) = 0 \] 6. **Find \(\frac{dy}{dx}\):** From the above, we can express \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{b(a - b)}{b(a + b)} = \frac{a - b}{a + b} \] 7. **Find \(\frac{dx}{dy}\):** To find \(\frac{dx}{dy}\), we take the reciprocal: \[ \frac{dx}{dy} = \frac{a + b}{a - b} \] ### Final Answer: \[ \frac{dx}{dy} = \frac{a + b}{a - b} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+sqrt2b cosx)(a-sqrt2b cosy)=a^2-b^2, where a gt b gt 0 , then (dx)/(dy) at (pi/4,pi/4) is :

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The value of int_0^(pi//2)(sqrt(cosx))/(sqrt(cos x)+sqrt(s in x))dx is pi//2 b. pi//4 c. 0 d. none of these

If y=sqrt((x-sinx)+sqrt(x-sinx)+...), then ||(dx)/(dy)|_(x=(pi)/(2))^(2)-2pi|=............

int_(pi)^(2 pi)[sqrt(2)cos x]dx=

If y=sqrt((x-sin x)+sqrt(x-sin x)+...) then |(dx)/(dy)|_(x=(pi)/(2))^(2)-2 pi|=

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

The integral int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-4sin((x)/(2))dx) equal (1)pi-4(2)(2 pi)/(3)-4-4sqrt(3)(3)4sqrt(3)-4(4)4sqrt(3)-4-(pi)/(3)

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2