Home
Class 12
MATHS
Intgerate intx^2/(xsinx+cosx)^2dx...

Intgerate `intx^2/(xsinx+cosx)^2dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x^2}{(x \sin x + \cos x)^2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x \sin x + \cos x \). Then, we need to find \( dt \): \[ dt = (x \cos x + \sin x) \, dx \] From this, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{x \cos x + \sin x} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral \( I \): \[ I = \int \frac{x^2}{t^2} \cdot \frac{dt}{x \cos x + \sin x} \] This simplifies to: \[ I = \int \frac{x^2}{t^2 (x \cos x + \sin x)} \, dt \] ### Step 3: Integration by Parts We will use integration by parts. Let: - \( u = x \sec x \) - \( dv = \frac{dt}{t^2} \) Then, we have: \[ du = \left(\sec x + x \sec x \tan x\right) \, dx \] And integrating \( dv \): \[ v = -\frac{1}{t} \] ### Step 4: Apply Integration by Parts Using integration by parts: \[ I = uv - \int v \, du \] Substituting our values: \[ I = -\frac{x \sec x}{t} - \int -\frac{1}{t} \left(\sec x + x \sec x \tan x\right) \, dx \] ### Step 5: Substitute Back Now substitute back \( t = x \sin x + \cos x \): \[ I = -\frac{x \sec x}{x \sin x + \cos x} + \int \frac{\sec x + x \sec x \tan x}{x \sin x + \cos x} \, dx \] ### Step 6: Final Integration The integral \( \int \sec^2 x \, dx \) can be computed, which gives: \[ \int \sec^2 x \, dx = \tan x + C \] ### Final Result Combining everything, we get: \[ I = -\frac{x \sec x}{x \sin x + \cos x} + \tan x + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

intx^2/(xcosx-sinx)^2dx

Evaluate: int(x^2+42)/(xsinx+7cosx)^2dx

Evaluate: int(x^2+6)/(xsinx+3cosx)^2dx

intx(cosx)dx

e^((xsinx+cosx))

The integral int((X)/(xsinx + cosx))^2dx is equal to (where C is a constant integration) :

Evaluate: int(x^2)/((xsinx+cosx)^2)\ \ dx

int(xcosx)/(xsinx+cosx)dx=