Home
Class 10
MATHS
Prove that (sintheta-costheta+1)/(sinthe...

Prove that `(sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta)`, using the identity `sec^2theta=1+tan^2theta`

Text Solution

Verified by Experts

L.H.S `(sinθ−cosθ+1)/(sinθ+cosθ−1) = (tanθ+secθ−1)/(tanθ−secθ+1)` ​
`= [(tanθ+secθ)−(sec^2θ−tan^2θ)]/(tanθ−secθ+1)` ​
`=[(tanθ+secθ)−(secθ−tanθ)(secθ+tanθ)]/(tanθ−secθ+1)` ​
...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NCERT|Exercise EXERCISE 8.3|7 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NCERT|Exercise Exercise 8.2|4 Videos
  • COORDINATE GEOMETRY

    NCERT|Exercise EXERCISE 7.3|5 Videos
  • NCERT THEOREMS

    NCERT|Exercise THEOREM 10.1|2 Videos

Similar Questions

Explore conceptually related problems

Prove that sintheta/(1-costheta)=cosectheta+cot theta

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2sectheta

prove that- (sintheta+1-costheta)/(costheta-1+sintheta)=(1+sintheta)/costheta

Prove that (tantheta+Sectheta+1)/(-tantheta+Sectheta+1)=(Costheta)/(1-Sintheta)

Prove that : (1+costheta- sin^(2)theta)/(sintheta+sinthetacostheta)=cottheta

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

Prove that- (1-sintheta)/(1+sintheta)= (sectheta-tantheta)^2

Prove that : (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)-tantheta