Home
Class 11
MATHS
Show that tan{(2n+1)pi+theta}+tan{(2n+1)...

Show that `tan{(2n+1)pi+theta}+tan{(2n+1)pi-theta}=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan (pi/4+theta/2)=sec theta +tan theta .

If tan theta+1/(tan theta)=2 , then show that tan^(2)theta+1/(tan^(2)theta)= 0

If tan(pi/4+theta)+tan(pi/4-theta)=a, then tan^(2)(pi/4+theta)+tan^(2)(pi/4-theta)=(a)a^(2)+1 (b) a^(2)+2(c)a^(2)-2(d) none of these

If theta=(pi)/(4n) then the value of tan theta tan(2 theta)tan(3 theta)...tan((2n-1)theta) is

If tan(pi//4 + theta ) + tan (pi//4 - theta ) =3 , " then " tan^(2)(pi//4 + theta ) + tan^(2)(pi//4 - theta ) =

If tan((pi)/(4)+theta)+tan((pi)/(4)-theta)=a, then tan^(2)((pi)/(4)+theta)+tan^(2)((pi)/(4)-theta)=

Prove that: tan^(2)theta=tan^(2)alpha,theta=n pi+-alpha,n in Z

If theta=pi//4n , then the value of tan(theta) tan (2theta).....tan(2n-2)thetatan(2n-1)theta is

If tan (alpha + theta) = n tan(alpha - theta) , show that : (n + 1) sin 2 theta = (n - 1) sin 2alpha .